Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.356
Filtrar
1.
Cryo Letters ; 45(3): 177-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709189

RESUMO

BACKGROUND: Ovarian tissue cryopreservation for fertility preservation carries a risk of malignant cell re-seeding. Artificial ovary is a promising method to solve such a problem. However, ovary decellularization protocols are limited. Hence, further studies are necessary to get better ovarian decellularization techniques for the construction of artificial ovary scaffolds. OBJECTIVE: To establish an innovative decellularization technique for whole porcine ovaries by integrating liquid nitrogen with chemical agents to reduce the contact time between the scaffolds and chemical reagents. MATERIALS AND METHODS: Porcine ovaries were randomly assigned to three groups: novel decellularized group, conventional decellularized group and fresh group. The ovaries in the novel decellularized group underwent three cycles of freezing by liquid nitrogen and thawing at temperatures around 37 degree C before decellularization. The efficiency of the decellularization procedure was assessed through histological staining and DNA content analysis. The maintenance of ovarian decellularized extracellular matrix(ODECM) constituents was determined by analyzing the content of matrix proteins. Additionally, we evaluated the biocompatibility of the decellularized extracellular matrix(dECM) by observing the growth of granulosa cells on the ODECM scaffold in vitro. RESULTS: Hematoxylin and eosin staining, DAPI staining and DNA quantification techniques collectively confirm the success of the novel decellularization methods in removing cellular and nuclear components from ovarian tissue. Moreover, quantitative assessments of ODECM contents revealed that the novel decellularization technique preserved more collagen and glycosaminoglycan compared to the conventional decellularized group (P<0.05). Additionally, the novel decellularized scaffold exhibited a significantly higher number of granulosa cells than the conventional scaffold during in vitro co-culture (P<0.05). CONCLUSION: The novel decellularized method demonstrated high efficacy in eliminating DNA and cellular structures while effectively preserving the extracellular matrix. As a result, the novel decellularized method holds significant promise as a viable technique for ovarian decellularization in forthcoming studies. Doi.org/10.54680/fr24310110212.


Assuntos
Criopreservação , Matriz Extracelular Descelularizada , Nitrogênio , Ovário , Alicerces Teciduais , Animais , Feminino , Nitrogênio/química , Suínos , Ovário/citologia , Alicerces Teciduais/química , Criopreservação/métodos , Matriz Extracelular Descelularizada/química , Engenharia Tecidual/métodos , Células da Granulosa/citologia , Preservação da Fertilidade/métodos , Matriz Extracelular/química , DNA/análise , DNA/química
2.
Cryo Letters ; 45(3): 149-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709186

RESUMO

BACKGROUND: The industrial scale cryo-storage of raw tissue materials requires a robust, low-cost and easy-to-operate method that can facilitate the down-stream process. OBJECTIVE: The study was aimed to develop the multifunctional protective solutions (MPS) for transportation at ambient conditions and also subsequent cryo-storage below -20 degree C of raw porcine hides for tissue engineering and regenerative medicine. MATERIALS AND METHODS: Protective solutions with antimicrobial activity and proteinase-inhibiting activity were developed and tested for its efficacy in preserving the extracellular matrix of porcine dermis from microbial spoilage, proteolytic degradation, freeze damage and excessive dehydration during shipping and cryo-storage. The MPSs contained phosphate-buffered saline with ethylene diamine tetra acetic acid (EDTA) added as chelator and proteinase inhibitor, as well as glycerol or maltodextrin (M180) as cryoprotectants. RESULTS: MPSs prepared with EDTA and glycerol or M180 had significant antimicrobial activity and proteinase-inhibiting activity during the period of shipping and handling. Glycerol and M180 prevented eutectic salt precipitation and excessive freeze dehydration upon cryo-storage of porcine hides. Without glycerol or M180, hides could be freeze-dehydrated to the low hydration at ~0.4 g/g dw, and formed irreversible plications after freezing. A critical hydration (0.8~0.9 g/g dw) was observed for the extracellular matrix of porcine dermis, and dehydration to a lower level could impose enormous stress and potential damage. The soaking of porcine hides in MPSs decreased water content as glycerol and M180 entered into dermis. Upon equilibration, the glycerol content in the tissue was about 94% of the incubating glycerol solution, but the M180 content in the tissue was only about 50% of the incubating M180 solution, indicating that M180 did not get into the entire aqueous domain within dermis. MPSs reduced ice formation and increased the unfrozen water content of porcine raw hides upon cryo-storage. CONCLUSION: MPSs prepared with EDTA and glycerol or M180 have antimicrobial activity and proteinase-inhibiting activity, which can be used for transportation and cryo-storage of raw hides at the industrial scale. Glycerol at 7.5% w/v and M180 at 20% w/v were sufficient to prevent freeze damage and excessive freeze dehydration. Doi.org/10.54680/fr24310110312.


Assuntos
Criopreservação , Crioprotetores , Medicina Regenerativa , Engenharia Tecidual , Animais , Medicina Regenerativa/métodos , Suínos , Engenharia Tecidual/métodos , Criopreservação/métodos , Crioprotetores/farmacologia , Crioprotetores/química , Ácido Edético/química , Ácido Edético/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos
3.
Carbohydr Polym ; 337: 122144, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710569

RESUMO

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups. Thiol-terminated cell-adhesion peptides were tethered to the hydrogel network to promote integrin binding. Rapid and efficient in situ hydrogel formation was promoted by thiol-Michael addition "click" chemistry via maleimide reaction with thiol-flanked protease-sensitive peptides. Alginate derivatives were further ionically crosslinked by divalent ions present in the medium, which led to greater stability and allowed longer cell culture periods. By tailoring alginate's biofunctionality we improved cell-cell and cell-matrix interactions, providing an ECM-like 3D microenvironment. We were able to systematically and independently vary biochemical and biophysical parameters to elicit specific cell responses, creating custom-made 3D matrices. DMTMM-mediated maleimide incorporation is a promising approach to synthesizing AlgM derivatives that can be leveraged to produce ECM-like matrices for a broad range of applications, from in vitro tissue modeling to tissue regeneration.


Assuntos
Alginatos , Química Click , Matriz Extracelular , Hidrogéis , Maleimidas , Compostos de Sulfidrila , Maleimidas/química , Alginatos/química , Compostos de Sulfidrila/química , Hidrogéis/química , Hidrogéis/síntese química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Humanos , Reagentes de Ligações Cruzadas/química , Adesão Celular/efeitos dos fármacos , Animais
4.
J Mater Chem B ; 12(16): 3984-3995, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563496

RESUMO

The natural extracellular matrix (ECM) consists of a continuous integrated fibrin network and a negatively charged proteoglycan-based matrix. In this work, we report a novel three-dimensional nanofiber hydrogel composite that mimics the natural ECM structure, exhibiting both degradability and mechanical characteristics comparable to that of tumor tissue. The embedded nanofiber improves the hydrogel mechanical properties, and varying the fiber density can match the elastic modulus of different tumor tissues (1.51-10.77 kPa). The degradability of the scaffold gives sufficient space for tumor cells to secrete and remodel the ECM. The expression levels of cancer stem cell markers confirmed the development of aggressive and metastatic phenotypes of prostate cancer cells in the 3D scaffold. Similar results were obtained in terms of anticancer resistance of prostate cancer cells in 3D scaffolds showing stem cell-like properties, suggesting that the current bionic 3D scaffold tumor model has broad potential in the development of effective targeted agents.


Assuntos
Matriz Extracelular , Hidrogéis , Nanofibras , Nanofibras/química , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Hidrogéis/química , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Alicerces Teciduais/química , Masculino , Linhagem Celular Tumoral , Células Tumorais Cultivadas , Proliferação de Células/efeitos dos fármacos
5.
Soft Matter ; 20(16): 3483-3498, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38587658

RESUMO

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 µm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.


Assuntos
Alginatos , Matriz Extracelular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Alginatos/química , Técnicas de Cultura de Células em Três Dimensões , Viscosidade , Células Estromais/citologia , Células Estromais/metabolismo , Elasticidade , Alicerces Teciduais/química , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Fenômenos Biomecânicos , Reologia , Modelos Biológicos , Teorema de Bayes
6.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557663

RESUMO

Extracellular matrix (ECM) plays a critical role in cell behavior and development. Organoids generated from human induced pluripotent stem cells (hiPSCs) are in the spotlight of many research areas. However, the lack of physiological cues in classical cell culture materials hinders efficient iPSC differentiation. Incorporating commercially available ECM into stem cell culture provides physical and chemical cues beneficial for cell maintenance. Animal-derived commercially available basement membrane products are composed of ECM proteins and growth factors that support cell maintenance. Since the ECM holds tissue-specific properties that can modulate cell fate, xeno-free matrices are used to stream up translation to clinical studies. While commercially available matrices are widely used in hiPSC and organoid work, the equivalency of these matrices has not been evaluated yet. Here, a comparative study of hiPSC maintenance and human intestinal organoids (hIO) generation in four different matrices: Matrigel (Matrix 1-AB), Geltrex (Matrix 2-AB), Cultrex (Matrix 3-AB), and VitroGel (Matrix 4-XF) was conducted. Although the colonies lacked a perfectly round shape, there was minimal spontaneous differentiation, with over 85% of the cells expressing the stem cell marker SSEA-4. Matrix 4-XF led to the formation of 3D round clumps. Also, increasing the concentration of supplement and growth factors in the media used to make the Matrix 4-XF hydrogel solution improved hiPSC expression of SSEA-4 by 1.3-fold. Differentiation of Matrix 2-AB -maintained hiPSC led to fewer spheroid releases during the mid-/hindgut stage compared to the other animal-derived basement membranes. Compared to others, the xeno-free organoid matrix (Matrix 4-O3) leads to larger and more mature hIO, suggesting that the physical properties of xeno-free hydrogels can be harnessed to optimize organoid generation. Altogether, the results suggest that variations in the composition of different matrices affect stages of IO differentiation. This study raises awareness about the differences in commercially available matrices and provides a guide for matrix optimization during iPSC and IO work.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Membrana Basal , Matriz Extracelular/química , Organoides/metabolismo , Diferenciação Celular , Hidrogéis/metabolismo
7.
Biomaterials ; 308: 122560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38603826

RESUMO

Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.


Assuntos
Matriz Extracelular , Fibroblastos , Fibronectinas , Engenharia Tecidual , Fibronectinas/química , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Humanos , Engenharia Tecidual/métodos , Fibroblastos/metabolismo , Fibroblastos/citologia , Animais , Alicerces Teciduais/química , Adesão Celular , Camundongos , Organoides/metabolismo , Organoides/citologia
8.
Biomed Mater ; 19(4)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653259

RESUMO

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Assuntos
Matriz Extracelular Descelularizada , Polpa Dentária , Proteômica , Engenharia Tecidual , Alicerces Teciduais , Polpa Dentária/citologia , Proteômica/métodos , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Dodecilsulfato de Sódio/química , Humanos , Odontogênese , Matriz Extracelular/metabolismo , Matriz Extracelular/química
9.
Biofabrication ; 16(3)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663394

RESUMO

Extracellular matrix (ECM) rich whole organ bio-scaffolds, preserving structural integrity and essential growth factors, has potential towards regeneration and reconstruction. Women with cervical anomalies or trauma can benefit from clinical cervicovaginal repair using constructs rich in site specific ECM. In this study, complete human cervix decellularization was achieved using a modified perfusion-based stir bench top decellularization method. This was followed by physico-chemical processes including perfusion of ionic agents, enzymatic treatment and washing using detergent solutions for a duration of 10-12 d. Histopathological analysis, as well as DNA quantification confirmed the efficacy of the decellularization process. Tissue ultrastructure integrity was preserved and the same was validated via scanning electron microscopy and transmission electron microscopy studies. Biochemical analysis and structural characterizations like Fourier transform infrared, Raman spectroscopy of decellularized tissues demonstrated preservation of important proteins, crucial growth factors, collagen, and glycosaminoglycans.In vitrostudies, using THP-1 and human umbilical vein endothelial cell (HUVEC) cells, demonstrated macrophage polarization from M1 to M2 and vascular functional genes enhancement, respectively, when treated with decellularized human cervical matrix (DHCp). Crosslinked DHC scaffolds were recellularized with site specific human cervical epithelial cells and HUVEC, showing non-cytotoxic cell viability and enhanced proliferation. Furthermore, DHC scaffolds showed immunomodulatory effectsin vivoon small rodent model via upregulation of M2 macrophage genes as compared to decellularized rat cervix matrix scaffolds (DRC). DHC scaffolds underwent neo-vascularization followed by ECM remodeling with enhanced tissue integration.


Assuntos
Colo do Útero , Matriz Extracelular Descelularizada , Células Endoteliais da Veia Umbilical Humana , Alicerces Teciduais , Humanos , Feminino , Colo do Útero/citologia , Animais , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Alicerces Teciduais/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Ratos , Engenharia Tecidual , Células THP-1 , Macrófagos/metabolismo , Macrófagos/citologia , Ratos Sprague-Dawley
10.
Methods Mol Biol ; 2803: 3-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676881

RESUMO

The extracellular matrix (ECM) forms most of the tissue microenvironment and is in a constant and dynamic equilibrium with cells. The decellularization process employs physical or chemical methods, or a combination of them, to remove the cellular components of tissues and organs while preserving the architecture and composition of the ECM. Depending on the methodology used, the decellularized ECM (dECM) is then suitable for research or clinical applications. Here, we describe an optimized protocol for the efficient decellularization of the human myocardium to generate 3D scaffolds of well-preserved cardiac extracellular matrix that can be used for in vitro or in vivo studies.


Assuntos
Matriz Extracelular Descelularizada , Miocárdio , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Miocárdio/citologia , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Microambiente Celular
11.
Biomater Adv ; 160: 213850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626580

RESUMO

Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.


Assuntos
Matriz Extracelular , Hidrogéis , Metacrilatos , Polimerização , Animais , Metacrilatos/química , Suínos , Hidrogéis/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fígado , Humanos , Impressão Tridimensional , Processos Fotoquímicos , Bioimpressão/métodos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Reagentes de Ligações Cruzadas/química , Compostos de Epóxi/química
12.
Biomater Adv ; 160: 213857, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657287

RESUMO

Articular cartilage injury impairs joint function and necessitates orthopedic intervention to restore the structure and function of the cartilage. Extracellular matrix (ECM) scaffolds derived from bone marrow mesenchymal stem cells (BMSCs) can effectively promote cell adhesion, proliferation, and chondrogenesis. However, pre-shaped ECM scaffolds have limited applicability due to their poor fit with the irregular surface of most articular cartilage defects. In this study, we fabricated an injectable active ECM hydrogel from autologous BMSCs-derived ECM by freeze-drying, liquid nitrogen milling, and enzymatic digestion. Moreover, our in vitro and in vivo results demonstrated that the prepared hydrogel enhanced chondrocyte adhesion and proliferation, chondrogenesis, cartilage regeneration, and integration with host tissue, respectively. These findings indicate that active ECM components can provide trophic support for cell proliferation and differentiation, restoring the structure and function of damaged cartilage.


Assuntos
Cartilagem Articular , Condrócitos , Condrogênese , Matriz Extracelular , Hidrogéis , Células-Tronco Mesenquimais , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animais , Células-Tronco Mesenquimais/citologia , Cartilagem Articular/fisiologia , Cartilagem Articular/lesões , Hidrogéis/química , Alicerces Teciduais/química , Condrócitos/transplante , Engenharia Tecidual/métodos , Proliferação de Células , Diferenciação Celular , Coelhos , Adesão Celular , Humanos , Injeções
13.
Biomater Adv ; 160: 213861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663159

RESUMO

Novel strategies employing mechano-transducing materials eliciting biological outcomes have recently emerged for controlling cellular behaviour. Targeted cellular responses are achieved by manipulating physical, chemical, or biochemical modification of material properties. Advances in techniques such as nanopatterning, chemical modification, biochemical molecule embedding, force-tuneable materials, and artificial extracellular matrices are helping understand cellular mechanotransduction. Collectively, these strategies manipulate cellular sensing and regulate signalling cascades including focal adhesions, YAP-TAZ transcription factors, and multiple osteogenic pathways. In this minireview, we are providing a summary of the influence that these materials, particularly titanium-based orthopaedic materials, have on cells. We also highlight recent complementary methodological developments including, but not limited to, the use of metabolomics for identification of active biomolecules that drive cellular differentiation.


Assuntos
Mecanotransdução Celular , Osteogênese , Osteogênese/fisiologia , Humanos , Titânio/química , Animais , Diferenciação Celular , Propriedades de Superfície , Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Matriz Extracelular/química
14.
J Mater Sci Mater Med ; 35(1): 26, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683259

RESUMO

OBJECTIVE: Aortic valve neocuspidization (AVNeo) using autologous pericardium is a promising technique. Expected advantages are reduced immune response, appropriate biomechanics and lower treatment expenses. Nevertheless, autologous pericardium can be affected by patient's age and comorbidities. Usually, glutaraldehyde (GA) - fixed bovine pericardium is the basic material for aortic valve prostheses, easy available and carefully pre-examined in a standardized fabrication process. Aim of the study is the verification of autologous pericardial tissue homogeneity by analysing tissue thickness, biomechanics and extracellular matrix (ECM) composition. METHODS: Segments of human GA-fixed pericardium selected by the surgeon based on visual criteria for cusp pre-cut and remaining after surgical AV replacement were investigated in comparison to bovine standard tissue treated equivalently. Pericardium sampling was performed at up to three positions of each sutured cusp for histological or biomechanical analysis, according to tissue availability. RESULTS AND CONCLUSIONS: Human pericardia exhibited a higher heterogeneity in collagen content, density of vessel structures and elastic moduli. Thickness, vessel density and collagen and elastin content differed significantly between the species. In contrast, significant interindividual differences were detected in most properties investigated for human pericardial samples but only for tissue thickness in bovine tissues. Higher heterogeneity of human pericardium, differing vessel and collagen content compared to bovine state-of-the-art material might be detrimental for long term AV functionality or deterioration and have to be intensely investigated in patients follow up after autologous cusp replacement.


Assuntos
Valva Aórtica , Bioprótese , Próteses Valvulares Cardíacas , Pericárdio , Bovinos , Humanos , Valva Aórtica/cirurgia , Animais , Fenômenos Biomecânicos , Masculino , Feminino , Idoso , Matriz Extracelular/química , Pessoa de Meia-Idade , Colágeno/química , Glutaral/química , Teste de Materiais , Implante de Prótese de Valva Cardíaca/métodos
15.
Nat Comput Sci ; 4(4): 299-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594592

RESUMO

The three-dimensional (3D) organization of cells determines tissue function and integrity, and changes markedly in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, high computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, an efficient open-source program to simulate large tissues in three dimensions with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform mechanical properties, as found in polarized epithelia. Spheroids, vesicles, sheets, tubes and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at a great level of detail.


Assuntos
Polaridade Celular , Simulação por Computador , Modelos Biológicos , Fenômenos Biomecânicos/fisiologia , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Células Epiteliais/fisiologia , Células Epiteliais/citologia , Matriz Extracelular/fisiologia , Matriz Extracelular/química , Imageamento Tridimensional/métodos , Software
16.
ACS Appl Mater Interfaces ; 16(13): 15761-15772, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513048

RESUMO

Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor corneas that are used for treating corneal blindness, often resulting from damage in the corneal stromal microstructure. Human adipose tissue is one of the most abundant tissues and easy to access, and adipose tissue-derived stem cells (hASCs) are a highly advantageous cell type for tissue engineering. Furthermore, hASCs have already been studied in clinical trials for treating corneal stromal pathologies. In this study, a corneal stroma-specific ECM was engineered without the need for donor corneas by differentiating hASCs toward corneal stromal keratocytes (hASC-CSKs). Furthermore, this ECM was utilized as a component for corneal stroma-specific bioink where hASC-CSKs were printed to produce corneal stroma structures. This cost-effective approach combined with a clinically relevant cell type provides valuable information on developing more sustainable tissue-specific solutions and advances the field of corneal tissue engineering.


Assuntos
Bioimpressão , Engenharia Tecidual , Animais , Humanos , Engenharia Tecidual/métodos , Substância Própria/metabolismo , Córnea , Matriz Extracelular/química , Materiais Biocompatíveis/metabolismo , Tecido Adiposo , Células-Tronco , Alicerces Teciduais , Bioimpressão/métodos
17.
Nano Lett ; 24(13): 4029-4037, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526438

RESUMO

The mechanical interaction between cells and the extracellular matrix is pervasive in biological systems. On fibrous substrates, cells possess the ability to recruit neighboring fibers, thereby augmenting their own adhesion and facilitating the generation of mechanical cues. However, the matrices with high moduli impede fiber recruitment, restricting the cell mechanoresponse. Herein, by harnessing the inherent swelling properties of gelatin, the flexible gelatin methacryloyl network empowers cells to recruit fibers spanning a broad spectrum of physiological moduli during adhesion. The high flexibility concurrently facilitates the optimization of fiber distribution, deformability, and modulus, contributing to the promotion of cell mechanosensing. Consequently, the randomly distributed flexible fibers with high moduli maximize the cell adhesive forces. This study uncovers the impact of fiber recruitment on cell mechanosensing and introduces fiber flexibility as a previously unexplored property, offering an innovative perspective for the design and development of novel biomaterials.


Assuntos
Materiais Biocompatíveis , Matriz Extracelular , Materiais Biocompatíveis/química , Matriz Extracelular/química , Módulo de Elasticidade
18.
Biomed Mater ; 19(3)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537375

RESUMO

The development of new three-dimensional biomaterials with advanced versatile properties is critical to the success of tissue engineering (TE) applications. Here, (a) bioactive decellularized tendon extracellular matrix (dECM) with a sol-gel transition feature at physiological temperature, (b) halloysite nanotubes (HNT) with known mechanical properties and bioactivity, and (c) magnetic nanoparticles (MNP) with superparamagnetic and osteogenic properties were combined to develop a new scaffold that could be used in prospective bone TE applications. Deposition of MNPs on HNTs resulted in magnetic nanostructures without agglomeration of MNPs. A completely cell-free, collagen- and glycosaminoglycan- rich dECM was obtained and characterized. dECM-based scaffolds incorporated with 1%, 2% and 4% MNP-HNT were analysed for their physical, chemical, andin vitrobiological properties. Fourier-transform infrared spectroscopy, x-ray powder diffractometry and vibrating sample magnetometry analyses confirmed the presence of dECM, HNT and MNP in all scaffold types. The capacity to form apatite layer upon incubation in simulated body fluid revealed that dECM-MNP-HNT is a bioactive material. Combining dECM with MNP-HNT improved the thermal stability and compressive strength of the macroporous scaffolds upto 2% MNP-HNT.In vitrocytotoxicity and hemolysis experiments showed that the scaffolds were essentially biocompatible. Human bone marrow mesenchymal stem cells adhered and proliferated well on the macroporous constructs containing 1% and 2% MNP-HNT; and remained metabolically active for at least 21 din vitro. Collectively, the findings support the idea that magnetic nanocomposite dECM scaffolds containing MNP-HNT could be a potential template for TE applications.


Assuntos
Nanotubos , Alicerces Teciduais , Humanos , Argila/química , Alicerces Teciduais/química , Estudos Prospectivos , Engenharia Tecidual/métodos , Fenômenos Magnéticos , Nanotubos/química , Matriz Extracelular/química
19.
Biofabrication ; 16(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507789

RESUMO

Corneal damage contributes to blindness in millions of people. Simulating natural corneas with artificial corneas is challenging due to material and manufacturing limitations, including poor mechanical properties, complex manufacturing processes, and ocular histocompatibility. In this study, electrospun micro-nanofibrous decellularized extracellular matrix (dECM) is combined with digital light processing 3D bioprinting and validated as a bioartificial cornea for the first time. Electrospinning gives the material a controllable shape, and the electrospun micro-nanofibrous dECM, with preserved inherent biochemical components, can better mimic the natural ECM native microenvironment. An efficient platform can be developed for creating novel structural materials, when combined with intelligent manufacturing. Artificial biological corneas developed using this method showed five-fold improvements in mechanical properties (248.5 ± 35.67 kPa vs. 56.91 ± 3.68 kPa,p< 0.001), superior guidance for cell organization and adhesion, and better maintenance of the cellular phenotype of keratocytes. In animal studies,in vivotransplantation of this artificial cornea showed better regeneration, which accelerated corneal epithelialization and maintained corneal transparency. This method has potential for biomedical applications, and bioartificial corneas manufactured by this method have ideal properties as an alternative to lamellar keratoplasty, with promise for clinical transformation.


Assuntos
Bioimpressão , Nanofibras , Animais , Humanos , Matriz Extracelular Descelularizada , Bioimpressão/métodos , Córnea , Matriz Extracelular/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos
20.
Lab Chip ; 24(7): 2094-2106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38444329

RESUMO

Organ-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures. However, this technology presents some drawbacks such as the necessity for physical structures as pillars to confine these hydrogels, as well as the difficulty in reaching different shapes and patterns to create convoluted gradients or more realistic biological structures. In addition, pillars can also interfere with the fluid flow, altering the local shear forces and, therefore, modifying the mechanical environment in the OOC model. In this work, we present a methodology based on a plasma surface treatment that allows building cell culture chambers with abutment-free patterns capable of producing precise shear stress distributions. Therefore, pillarless devices with arbitrary geometries are needed to obtain more versatile, reliable, and biomimetic experimental models. Through computational simulation studies, these shear stress changes are demonstrated in different designed and fabricated geometries. To prove the versatility of this new technique, a blood-brain barrier model has been recreated, achieving an uninterrupted endothelial barrier that emulates part of the neurovascular network of the brain. Finally, we developed a new technology that could avoid the limitations mentioned above, allowing the development of biomimetic OOC models with complex and adaptable geometries, with cell-to-cell contact if required, and where fluid flow and shear stress conditions could be controlled.


Assuntos
Técnicas de Cultura de Células , Hidrogéis , Animais , Hidrogéis/química , Endotélio , Matriz Extracelular/química , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA